ph\u00e9p t\u00ednh tr\u1eeb trong excel<\/strong> \u0111\u01b0\u1ee3c d\u00f9ng r\u1ea5t ph\u1ed5 bi\u1ebfn hi\u1ec7n nay. \u0110\u1ec3 c\u00f3 th\u1ec3 th\u1ef1c hi\u1ec7n \u0111\u01b0\u1ee3c ph\u00e9p tr\u1eeb n\u00e0y, b\u1ea1n ch\u1ec9 c\u1ea7n l\u1ea5y gi\u00e1 tr\u1ecb \u1edf \u00f4 tham chi\u1ebfu s\u1ed1 1 tr\u1eeb \u0111i c\u00e1c gi\u00e1 tr\u1ecb \u1edf nh\u1eefng c\u00f4 tham chi\u1ebfu c\u00f2n l\u1ea1i.<\/p>\nV\u00ed d\u1ee5: Ch\u00fang ta c\u00f3 b\u00e0i to\u00e1n sau: 1 v\u01b0\u1eddn c\u00f3 t\u1ed5ng 1657 c\u00e2y kh\u00e1c nhau (g\u1ed3m \u1ed5i, xo\u00e0i, t\u00e1o, l\u00ea). Trong \u0111\u00f3, \u1ed5i c\u00f3 127 c\u00e2y, xo\u00e0i c\u00f3 239 c\u00e2y, t\u00e1o c\u00f3 98 c\u00e2y. V\u1eady s\u1ed1 c\u00e2y l\u00ea l\u00e0 bao nhi\u00eau?<\/p>\n
Theo \u0111\u00f3, b\u1ea1n s\u1ebd \u0111i\u1ec1n s\u1ed1 l\u01b0\u1ee3ng c\u00e1c c\u00e2y theo th\u1ee9 t\u1ef1 \u1ed5i – xo\u00e0i – t\u00e1o – l\u00ea (t\u1eeb A2 – D2 trong b\u1ea3ng t\u00ednh excel). Ti\u1ebfp \u0111\u1ebfn, b\u1ea1n s\u1ebd \u00e1p d\u1ee5ng c\u00f4ng th\u1ee9c l\u00e0 =A2-B2-C2-D2<\/strong> r\u1ed3i nh\u1ea5n Enter<\/strong> v\u00e0o \u00f4 tham chi\u1ebfu mu\u1ed1n hi\u1ec3n th\u1ecb l\u00e0 s\u1ebd c\u00f3 k\u1ebft qu\u1ea3 (E2) nh\u01b0 \u1ea3nh d\u01b0\u1edbi.<\/p>\n
<\/p>\n
2.3 S\u1eed d\u1ee5ng h\u00e0m SUM<\/strong><\/span><\/h3>\nC\u00e1ch th\u1ee9 3 \u0111\u1ec3 th\u1ef1c hi\u1ec7n ph\u00e9p tr\u1eeb trong excel ch\u00ednh l\u00e0 b\u1ea1n s\u1eed d\u1ee5ng h\u00e0m SUM. Trong excel, h\u00e0m SUM \u0111\u01b0\u1ee3c d\u00f9ng \u0111\u1ec3 t\u00ednh t\u1ed5ng, v\u1eady n\u00ean b\u1ea1n c\u00f3 th\u1ec3 \u00e1p d\u1ee5ng theo 2 c\u00e1ch:<\/p>\n
C\u00e1ch 1: 1 s\u1ed1 – h\u00e0m SUM<\/strong> (v\u1edbi h\u00e0m SUM l\u00e0 t\u1ed5ng c\u00e1c s\u1ed1 b\u1ea1n mu\u1ed1n tr\u1eeb \u0111i).<\/p>\nV\u00ed d\u1ee5: V\u1eabn l\u00e0 b\u00e0i to\u00e1n t\u00ednh s\u1ed1 l\u01b0\u1ee3ng c\u00e2y l\u00ea trong v\u01b0\u1eddn \u1edf tr\u00ean, thay v\u00ec tr\u1eeb \u0111i t\u1eebng gi\u00e1 tr\u1ecb, b\u1ea1n s\u1ebd th\u1ef1c hi\u1ec7n nh\u01b0 sau:<\/p>\n
\n- B\u01b0\u1edbc 1: \u0110i\u1ec1n s\u1ed1 l\u01b0\u1ee3ng c\u00e1c c\u00e2y theo th\u1ee9 t\u1ef1 \u1ed5i – xo\u00e0i – t\u00e1o – l\u00ea (t\u1eeb A2 – D2 trong b\u1ea3ng t\u00ednh excel).<\/li>\n
- B\u01b0\u1edbc 2: Nh\u1eadp c\u00f4ng th\u1ee9c =A2-SUM(B2:D2)<\/strong> v\u00e0 nh\u1ea5n Enter<\/strong> v\u00e0o \u00f4 tham chi\u1ebfu mu\u1ed1n hi\u1ec3n th\u1ecb k\u1ebft qu\u1ea3 (E2) nh\u01b0 h\u00ecnh ph\u00eda d\u01b0\u1edbi.<\/li>\n<\/ul>\n
<\/p>\n
C\u00e1ch 2: D\u00f9ng h\u00e0m SUM \u0111\u1ec3 tr\u1eeb<\/strong><\/p>\nV\u1edbi c\u00e1ch n\u00e0y, b\u1ea1n s\u1ebd ph\u1ea3i th\u00eam d\u1ea5u \u201c-\u201d <\/strong>\u1edf tr\u01b0\u1edbc c\u00e1c \u0111\u1ed1i s\u1ed1 v\u00e0 bi\u1ebfn n\u00f3 th\u00e0nh s\u1ed1 h\u1ea1ng \u00e2m. C\u1ee5 th\u1ec3, theo v\u00ed d\u1ee5 tr\u00ean, b\u1ea1n s\u1ebd th\u1ef1c hi\u1ec7n c\u00f4ng th\u1ee9c =SUM(A2,-B2,-C2,-D2)<\/strong> v\u00e0 nh\u1ea5n Enter<\/strong> v\u00e0o \u00f4 tham chi\u1ebfu mu\u1ed1n hi\u1ec3n th\u1ecb k\u1ebft qu\u1ea3 (E2).<\/p>\n
<\/p>\n
2.4 Tr\u1eeb theo t\u1ef7 l\u1ec7 ph\u1ea7n tr\u0103m<\/strong><\/span><\/h3>\n\u0110\u1ec3 th\u1ef1c hi\u1ec7n ph\u00e9p tr\u1eeb trong excel theo t\u1ef7 l\u1ec7 ph\u1ea7n tr\u0103m, b\u1ea1n s\u1ebd c\u1ea7n d\u00f9ng d\u1ea5u \u201c-\u201d<\/strong> ho\u1eb7c h\u00e0m SUM \u0111\u1ec3 t\u00ednh b\u00ecnh th\u01b0\u1eddng v\u1edbi nh\u1eefng s\u1ed1 li\u1ec7u \u0111\u00e3 c\u00f3 s\u1eb5n %. Tr\u01b0\u1eddng h\u1ee3p gi\u00e1 tr\u1ecb ch\u01b0a \u0111\u01b0\u1ee3c chuy\u1ec3n \u0111\u1ed5i qua %, b\u1ea1n s\u1ebd ph\u1ea3i th\u00eam d\u1ea5u \u201c%\u201d<\/strong> v\u00e0o sau m\u1ed7i gi\u00e1 tr\u1ecb.<\/p>\nV\u00ed d\u1ee5: T\u00ednh s\u1ed1 % h\u1ecdc sinh \u0111\u1ea1t h\u1ecdc l\u1ef1c Gi\u1ecfi trong l\u1edbp.<\/p>\n
<\/p>\n
C\u00e1ch 1: D\u00f9ng d\u1ea5u \u201c-\u201d \u0111\u1ec3 t\u00ednh to\u00e1n b\u00ecnh th\u01b0\u1eddng<\/strong><\/p>\nB\u1ea1n s\u1ebd nh\u1eadp c\u00f4ng th\u1ee9c l\u00e0 =B1-B2-B3-B4<\/strong> r\u1ed3i nh\u1ea5n Enter<\/strong> l\u00e0 ra k\u1ebft qu\u1ea3 nh\u01b0 h\u00ecnh d\u01b0\u1edbi.<\/p>\n
<\/p>\n
C\u00e1ch 2: D\u00f9ng h\u00e0m SUM \u0111\u1ec3 tr\u1eeb %<\/strong><\/p>\nB\u1ea1n c\u00f3 th\u1ec3 tr\u1eeb b\u1eb1ng h\u00e0m SUM theo 1 trong 2 c\u00f4ng th\u1ee9c:<\/p>\n
\n- =B1-SUM(B2:B3) r\u1ed3i b\u1ea5m Enter.<\/li>\n<\/ul>\n
<\/p>\n
\n- =SUM(B1,-B2,-B3) r\u1ed3i nh\u1ea5n Enter.<\/li>\n<\/ul>\n
<\/p>\n
C\u00e1ch 3: D\u00f9ng h\u00e0m tr\u1eeb khi c\u00e1c gi\u00e1 tr\u1ecb kh\u00f4ng \u0111\u1ed3ng nh\u1ea5t %<\/strong><\/p>\nNh\u01b0 \u0111\u00e3 n\u00f3i \u1edf tr\u00ean, n\u1ebfu c\u00e1c d\u1eef li\u1ec7u ch\u01b0a \u0111\u01b0\u1ee3c chuy\u1ec3n \u0111\u1ed5i qua t\u1ef7 l\u1ec7 % th\u00ec b\u1ea1n ch\u1ec9 c\u1ea7n th\u00eam \u201c%\u201d<\/strong> v\u00e0o sau m\u1ed7i gi\u00e1 tr\u1ecb. V\u00ed d\u1ee5 nh\u01b0:<\/p>\n
<\/p>\n
2.5 Tr\u1eeb ng\u00e0y th\u00e1ng<\/strong><\/span><\/h3>\nTrong excel, b\u1ea1n c\u0169ng c\u00f3 th\u1ec3 \u00e1p d\u1ee5ng ph\u00e9p tr\u1eeb \u0111\u1ec3 tr\u1eeb ng\u00e0y th\u00e1ng. Tuy nhi\u00ean, b\u1ea1n s\u1ebd c\u1ea7n \u0111\u1ea3m b\u1ea3o c\u00e1c gi\u00e1 tr\u1ecb \u0111\u1ec1u \u1edf \u0111\u1ecbnh d\u1ea1ng Date<\/strong>.<\/p>\nC\u00e1ch th\u1ef1c hi\u1ec7n th\u00ec c\u0169ng t\u01b0\u01a1ng t\u1ef1 nh\u01b0 c\u00e1c c\u00f4ng th\u1ee9c \u1edf tr\u00ean, k\u1ebft qu\u1ea3 b\u1ea1n nh\u1eadn \u0111\u01b0\u1ee3c s\u1ebd l\u00e0 s\u1ed1 ng\u00e0y ch\u00eanh l\u1ec7ch gi\u1eefa c\u00e1c gi\u00e1 tr\u1ecb.<\/p>\n
V\u00ed d\u1ee5 nh\u01b0: B\u1ea1n tr\u1eeb 2 ng\u00e0y t\u1eeb 12\/07\/2022 v\u00e0 05\/07\/2022. B\u1ea1n s\u1ebd nh\u1eadp theo c\u00f4ng th\u1ee9c =B1-A1<\/strong> r\u1ed3i nh\u1ea5n Enter<\/strong> l\u00e0 s\u1ebd ra k\u1ebft qu\u1ea3 nh\u01b0 b\u00ean d\u01b0\u1edbi.<\/p>\n
<\/p>\n